The induction of neural crest-derived cartilage and bone by embryonic epithelia: an analysis of the mode of action of an epithelial-mesenchymal interaction.

نویسنده

  • B K Hall
چکیده

The formation of membrane bone from neural crest-derived mesenchyme of the maxillary and mandibular processes of the embryonic chick depends upon prior interactions between the mesenchyme and maxillary or mandibular epithelia. The present study explores the specificity of these interactions using tissue recombinations between heterotypic epithelia and mesenchyme. Mandibular and maxillary mesenchyme responded to maxillary and mandibular epithelia by forming bone. A third osteogenically inductive epithelium, the scleral epithelium with its specialized scleral papillae, also allowed mandibular mesenchyme to form bone, indicating that mesenchyme can form bone in response to osteogenic epithelia other than its own. Epithelia which normally do not induce membrane bone formation in situ (wing and leg bud, back and abdominal epithelia) also allowed mandibular epithelia to ossify as did mandibular epithelia from the 10-day-old foetal mouse. Thus this tissue interaction is neither site nor species specific. Mandibular epithelium allowed bone to form in osteogenic mesenchyme from the maxilla and the sclera of the chick and from the mouse mandible but would not induce bone formation from normally non-osteogenic mesenchyme of the limb buds, chorioallantoic membrane or trunk neural crest. The results obtained with all of the tissue recombinations were consistent with the epithelial-mesenchyme interactions that initiate osteogenesis in both the mandibular and the maxillary processes being permissive interactions. The distinction between permissive and instructive interactions is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution of osteo- and chondrogenic neural crest-derived cells and of osteogenically inductive epithelia in mandibular arches of embryonic chicks.

Mandibular arches of H.H. stage-22 embryonic chicks were divided into halves (lateral/medial; cephalad/caudal; or proximal/distal) and grafted to the chorioallantoic membranes of host embryos. All six halves formed both cartilage and membrane bone. Epithelial-mesenchymal recombinations performed between half mandibles showed (a), that the cephalad half of the mandible contained more chondrogeni...

متن کامل

Tissue interactions and the initiation of osteogenesis and chondrogenesis in the neural crest-derived mandibular skeleton of the embryonic mouse as seen in isolated murine tissues and in recombinations of murine and avian tissues.

Mandibular processes from 9- to 13-day-old embryonic mice formed both bone and cartilage when grafted to the chorioallantoic membranes of most embryonic chicks. Isolated ectomesenchyme, taken from 9-day-old embryos did not form bone or cartilage, while older ectomesenchyme formed both. Recombination of the epithelial and ectomesenchymal components confirmed that the presence of the epithelium w...

متن کامل

Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae

Mesenchyme is an embryonic precursor tissue that generates a range of structures in vertebrates including cartilage, bone, muscle, kidney, and the erythropoietic system. Mesenchyme originates from both mesoderm and the neural crest, an ectodermal cell population, via an epithelial to mesenchymal transition (EMT). Because ectodermal and mesodermal mesenchyme can form in close proximity and give ...

متن کامل

Study of Chondrogenic Effects of Chondrocytes Cocultured With Murine Bone Marrow-Derived Mesenchymal Stem Cells

Purpose: Co-culture systems of marrow derived mesenchymal stem cells (mMSCs) with mature chondrocytes have theoretically been considered as a putative way of MSCs chondrogenic differentiation. MSCs differentiated in this system could be used for transplantation purpose without of any need to their purification since the cells with which MSCs are co cultured are native cartilage cells. Despite o...

متن کامل

Study of Chondrogenic Effects of Chondrocytes Cocultured With Murine Bone Marrow-Derived Mesenchymal Stem Cells

Purpose: Co-culture systems of marrow derived mesenchymal stem cells (mMSCs) with mature chondrocytes have theoretically been considered as a putative way of MSCs chondrogenic differentiation. MSCs differentiated in this system could be used for transplantation purpose without of any need to their purification since the cells with which MSCs are co cultured are native cartilage cells. Despite o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of embryology and experimental morphology

دوره 64  شماره 

صفحات  -

تاریخ انتشار 1981